Fuerza y dinámica de la partícula
Una fuerza es una acción tal que aplicada sobre un cuerpo modifica su velocidad (mediante una aceleración). La fuerza es una magnitud vectorial. En el sistema internacional se mide en Newton.
Fuerza resultante
Si sobre un cuerpo actúan varias fuerzas se pueden sumar las mismas de forma vectorial (como suma de vectores) obteniendo una fuerza resultante, es decir equivalente a todas las demás. Si la resultante de fuerzas es igual a cero, el efecto es el mismo que si no hubiera fuerzas aplicadas: el cuerpo se mantiene en reposo o con movimiento rectilíneo uniforme, es decir que no modifica su velocidad.
![](http://www.fisicapractica.com/imagenes/dinamica/resultante.jpg)
En la mayoría de los casos no tenemos las coordenadas de los vectores sino que tenemos su módulo y el ángulo con el que la fuerza está aplicada. Para sumar las fuerzas en este caso es necesario descomponerlas proyectándolas sobre los ejes y luego volver a componerlas en una resultante (composición y descomposición de fuerzas).
Fuerza equilibrante
Se llama fuerza equilibrante a una fuerza con mismo módulo y dirección que la resultante (en caso de que sea distinta de cero) pero de sentido contrario. Es la fuerza que equilibra el sistema. Sumando vectorialmente a todas las fuerzas (es decir a la resultante) con la equilibrante se obtiene cero, lo que significa que no hay fuerza neta aplicada.
Diagramas de cuerpo libre
Un diagrama de cuerpo libre muestra a un cuerpo aislado con todas las fuerzas (en forma de vectores) que actúan sobre él (incluídas, si las hay, el peso, la normal, el rozamiento, la tensión, etc). No aparecen los pares de reacción, ya que los mismos están aplicados siempre en el otro cuerpo.Ejemplos
1) Cuerpo sobre el piso con una fuerza ejercida sobre el mismo, además del peso y su normal.
![Diagrama de Cuerpo Libre](http://www.fisicapractica.com/imagenes/dinamica/cuerpo-libre-1.gif)
2) Cuerpo sobre un plano inclinado con el peso, la fuerza normal y la fuerza de rozamiento hacia arriba. Para hacerlo más claro puede no dibujarse el cuerpo. Para resolver ejercicios de plano inclinado suele ser conveniente girar los ejes para que uno de ellos quede paralelo al plano.
![]() | ![]() |
Primera Condición de Equilibrio Un cuerpo se encuentra en equilibrio de traslación si la fuerza resultante de todas las fuerzas externas que actúan sobre él es nula. Matemáticamente, para el caso de fuerzas coplanares, se debe cumplir que la suma aritmética de las fuerzas o componentes que tienen dirección positiva del eje X es igual a la suma aritmética de las que tienen dirección negativa del mismo. Análogamente, la suma aritmética de las fuerzas o componentes que tienen dirección positiva del eje Y es igual a la suma aritmética de las que tienen dirección negativa del mismo. Geométricamente se debe cumplir que las fuerzas que actúan sobre el cuerpo en equilibrio, al ser graficadas de modo tal que el origen de cada fuerza se grafique a partir del extremo de otro, deben formar un polígono de fuerzas cerrado. Y esto debe ser así porque al ser la resultante nula, el origen de la primera fuerza (F1 en este caso) debe coincidir con el extremo de la última (F4 en este caso).
Hagamos DCL del bloque teniendo presente que tanto el resorte como la cuerda vertical se encuentran "tensadas" y por tanto las fuerzas que actúan sobre el bloque debido a estos cuerpos se grafican "saliendo" del bloque.
Lo que a continuación se tiene que hacer es resolver, el triángulo de fuerzas construido. En este caso, relacionando el triángulo de fuerzas con el triángulo notable de 37° y 53°, deducimos que (k = 30).
Teniendo presente que los ángulos de la dos perpendiculares son iguales, deducimos que la reacción del apoyo en A (RA) forma con la vertical un ángulo que es igual al ángulo diedro 2q. Por otro lado, tenido presente que los ángulos alternos internos entre rectas paralelas son iguales, deducimos que la fuerza F forma con la horizontal un ángulo q. A continuación construyamos el triángulo de fuerzas tenido presente que la resultante de la reacción del apoyo en B y el peso apunta hacia arriba. Se comprueba que el triángulo de fuerzas es un triángulo equilátero y por tanto: |
No hay comentarios:
Publicar un comentario